Dr. Stefano Filipazzi Dr. Alapan Mukhopadhyay Léo Navarro Chafloque EPFL, fall semester 2024 AG II - Schemes and sheaves

Exercises – week 7

Exercise 1. Finite covers of $\mathbb{P}^1_{\mathbb{C}}$. Let $n \geq 1$. Consider the self map c_n of \mathbb{C} -schemes on $\operatorname{Proj}(\mathbb{C}[x,y]) = \mathbb{P}^1_{\mathbb{C}}$ induced by Proj from the \mathbb{C} -algebra map $x \mapsto x^n$ and $y \mapsto y^n$ on $\mathbb{C}[x,y]$.

- (1) Compute the preimage by this map of $D_+(x)$ and $D_+(y)$, show it's affine and show that the induced map of rings at global sections $c_n^{-1}(D_+(x)) \to D_+(x)$ (and same with y) is finite.¹
- (2) Compute all the fibers of the map.

Exercise 2. Cones. Let S be a graded ring finitely generated in degree 1. We define the Cone of $Proj(S)^2$ to be the Spec(S). We call $v := V(S_+)$ the vertex of the cone.

(1) Consider $T = Bl_v(\operatorname{Spec}(S))$. Suppose that S is generated in degree 1. Show that the blow-up algebra (see week 5, exercise 3) is

$$S' = \bigoplus_{n \ge 0} \left(\bigoplus_{k \ge n} S_k \right).$$

The aspect *generated in degree 1* is crucial for the above. We suppose this for the rest of the exercise.

- (2) Show that the natural graded map $S \to S'$ induces a morphism $f \colon T \to \operatorname{Proj}(S)$.
- (3) Show that f restricted to the exceptional divisor of the blow-up is an isomorphism.
- (4) Let a be an element of degree 1 in S. Show that $f^{-1}(D_+(a)) \cong \operatorname{Spec}(S_{(a)}[t])$.

Remark. Some interpretation. Say $S_0 = k$. Take generators in degree 1 of S as a k-algebra. It gives a closed embedding in \mathbb{P}^n_k . We can therefore interpret X as a certain subset of lines in k^{n+1} . The cone consists of those lines in \mathbb{A}^{n+1}_k . The vertex v correspond to the origin where all lines meet. Recall that X can be seen as the \mathbb{G}_m -quotient of $\operatorname{Spec}(S) \setminus v$. Blowing up at the vertex replaces v by all directions going into v inside $\operatorname{Spec}(S)$, i.e. X. We will soon see that T is a line bundle over X, in fact the one associated to $\mathcal{O}_X(-1)$. The zero section of this line bundle correspond to the exceptional divisor in the above point of view.

¹A map of rings $A \to B$ is finite if B is a finitely generated A-module. This implies that this self map is a *finite map of schemes* a notion to be introduced in the lecture soon.

²Note that the following algebra depends on the algebra S, and so not only on the isomorphism class of Proj(S).

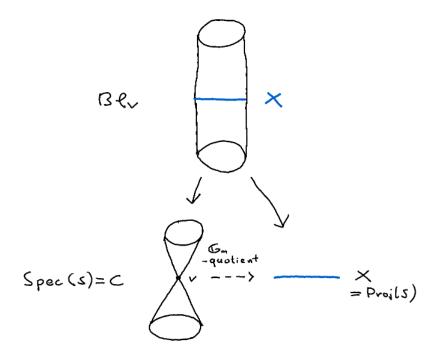


FIGURE 1. Some illustration of the above remark about Exercise 1.

Exercise 3. Functions on integral schemes and S_2 property. Let $X = \operatorname{Spec}(A)$ be an integral affine scheme. Denote by η the generic point of X. Denote by $K(X) = \mathcal{O}_{X,\eta}$. Let $f \in K(X)$. Define

$$I = \{ g \in A \mid fg \in A \},\$$

the *ideals of denominators* of f.

- (1) Show that $X \setminus V(I)$ is the largest open subscheme U of X such that $f \in \mathcal{O}_X(U)$.
- (2) Geometric interpretation of the S_2 property. Suppose that X is an affine integral S_2 scheme. Let $f \in K(X)$. Show that if V(I) has codimension³ at least 2, then V(I) is empty.
- (3) Deduce that if X is an affine integral S_2 scheme then if $f \in \mathcal{O}_X(U)$ with $X \setminus U$ being of codimension at least 2, then $f \in \mathcal{O}_X(X)$.

Remark. We can drop the affine condition and do basically the same exercise using the language of quasi-coherent sheaves.

Exercise 4. Fibers (2).

- (1) Show that for the morphism $\operatorname{Spec}(k[x,y]/(xy)) \to \operatorname{Spec}(k[x])$, induced by the obvious map $k[x] \to k[x,y]/(xy)$, every fiber is irreducible, although the $\operatorname{Spec}(k[x,y]/(xy))$ is not.
- (2) Show that for the morphism $\operatorname{Spec}(\mathbb{Q}[t]) \to \operatorname{Spec}(\mathbb{Q}[t])$ induced by $t \mapsto t^2$ there are infinitely many closed points with irreducible fibers and infinitely many closed points with non-irreducible fibers.

³meaning that every irreducible component of V(I) has codimension at least 2

Exercise 5. Separated schemes. Use the definition of separated maps to show the following.

- (1) Show that a scheme X is separated if and only for every pair of open affines U and V, the intersection $U \cap V$ is affine and the natural map $\mathcal{O}_X(U) \otimes \mathcal{O}_X(V) \to \mathcal{O}_X(U \cap V)$ is surjective.
- (2) Show that $\operatorname{Proj}(B) \to \operatorname{Spec}(\mathbb{Z})$ is separated for any N-graded ring B. (Using (1) can be handy)
- (3) Let k be a field. Let X be the scheme which is the gluing of two copies of $\mathbb{A}^1_k = \operatorname{Spec}(k[t])$ on the open subscheme $\mathbb{G}_m = \operatorname{Spec}(k[t, t^{-1}])$. Show that $X \to \operatorname{Spec}(k)$ is not separated.

Exercise 6. Gradings, geometrically. In what follows we write

$$\mathbb{G}_m = \operatorname{Spec}(\mathbb{Z}[t, t^{-1}]).$$

Note that $\mathbb{Z}[t,t^{-1}]\to\mathbb{Z}[x,x^{-1},y,y^{-1}]$ defined by $t\mapsto xy$ gives a map of schemes⁴

$$m: \mathbb{G}_m \times \mathbb{G}_m \to \mathbb{G}_m$$

which we call the *multiplication*.

A \mathbb{G}_m -action on an affine scheme $X = \operatorname{Spec}(A)$ is a map⁵

$$\mu \colon \mathbb{G}_m \times X \to X$$

such that the following diagram commutes⁶

$$\mathbb{G}_m \times \mathbb{G}_m \times X \xrightarrow{\operatorname{id} \times \mu} \mathbb{G}_m \times X$$

$$\downarrow^{m \times \operatorname{id}} \qquad \qquad \downarrow^{\mu}$$

$$\mathbb{G}_m \times X \xrightarrow{\mu} X$$

and if c denotes the map $c: X \to \mathbb{G}_m \times X$ induced by the evaluation a 1, then $\mu c = \mathrm{id}$.

- (1) Show that the set of \mathbb{Z} -gradings on a ring A (meaning gradings that turn A into a graded ring) is in one to one correspondence with the set of \mathbb{G}_m -actions on $\operatorname{Spec}(A)$.
- (2) Let d > 1, S and R two \mathbb{Z} -graded rings, with associated action μ_S and μ_R . Show that (where $(-)^d : \mathbb{G}_m \to \mathbb{G}_m$ is induced by Spec by the ring map determined by $t \mapsto t^d$)

$$\mathbb{G}_m \times \operatorname{Spec}(S) \xrightarrow{\mu_S} \operatorname{Spec}(S)
((-)^d, f) \downarrow \qquad \qquad \downarrow f
\mathbb{G}_m \times \operatorname{Spec}(R) \xrightarrow{\mu_R} \operatorname{Spec}(R)$$

commutes⁷ if and only φ factors through $S^{(d)} = \bigoplus_n S_{nd}$, meaning that is it homogeneous of degree d. Compare with the notion introduced in Exercise 5, week 4.

⁴We have $\mathbb{G}_m \times \mathbb{G}_m = \operatorname{Spec}(\mathbb{Z}[x, x^{-1}, y, y^{-1}].$

⁵We have $\mathbb{G}_m \times X = \operatorname{Spec}(A[t, t^{-1}])$.

⁶We have $\mathbb{G}_m \times \mathbb{G}_m \times X = \operatorname{Spec}(A[x, y, x^{-1}, y^{-1}]).$

⁷On points, this means that $f(\lambda x) = \lambda^d f(x)$.

(3) Let A be a \mathbb{Z} -graded ring and $A_0 \to A$ the inclusion. Show that $\pi \colon \operatorname{Spec}(A) \to \operatorname{Spec}(A_0)$ has the following universal property. For every affine scheme X and map $f \colon \operatorname{Spec}(A) \to X$ with the property that

$$\mathbb{G}_m \times \operatorname{Spec}(A) \xrightarrow{\mu} \operatorname{Spec}(A)$$

$$\underset{\operatorname{Spec}(A)}{\operatorname{pr}_2} \downarrow \qquad \qquad \downarrow_f \quad (\mathbb{G}_m\text{-invariant maps})$$

$$\operatorname{Spec}(A) \xrightarrow{f} X$$

then there exists a unique map \overline{f} : $\operatorname{Spec}(A_0) \to X$ with $\overline{f}\pi = f$. It means by definition that $\pi : \operatorname{Spec}(A) \to \operatorname{Spec}(A_0)$ is the quotient by the action of \mathbb{G}_m in the category of affine schemes.